Air control Engineering Co., Ltd.
Ammonia (NH3) gas that passes through a gas absorption tower reacts with acidic gases (such as SO3, HBr, HCl, HNO3, HF) to form ammonium, or creates fine droplets (0.1–1 µm) through the condensation of acidic gases (acid dew), leading to the phenomenon of white smoke. These fine droplets contain pollutant components and can be captured in samples during exhaust gas measurements, resulting in insufficient efficiency. Removing these submicron particles can be effectively achieved using electrostatic precipitators that utilize electrostatic forces for high-efficiency treatment.
Item | Dry ESP | Wet ESP | Remarks |
---|---|---|---|
Purpose | Primary particle removal | Advanced particle removal | Wet type is for advanced treatment |
Installation Location | Front | Rear | Wet type is installed at the final stage |
Shape | Horizontal, plate | Vertical tube or horizontal/vertical plate | Wet type can be made in various shapes |
Operating Humidity | 5~20 RH% | 100 RH% | Mainly applied close to 100% relative humidity |
Temperature | 120~425°C | <100°C | Dry type operates above the sulfuric acid condensation temperature(>120℃) |
High Concentration Dust Handling | Possible | Not possible | Wet type is less effective for high concentration dust |
PM10 Removal | Optimal | Limited | Wet type is not effective for large dust removal |
PM2.5 Removal | Average | Optimal | Wet type excels at removing submicron particles |
Removal of Condensable Particles | Not possible | Optimal | Wet type is effective for removing condensable materials |
H2SO4 Removal | Not possible | Optimal | Wet type is effective for removing sulfuric acid mist |
Specific Collection Area (SCA) | 90~240 s/m | 15~60 s/m | |
Treatment Velocity | 0.5~1.5 m/sec | 0.5~5.0 m/sec | |
Pressure Loss | < 50 mmAq | < 50 mmAq | |
Wastewater Generation | None | Yes | |
Dust Resistivity Effect | High | None | Wet type is not affected by dust resistivity |
Back Corona | Occurs | None | Wet type has no back corona phenomenon |
Dust Re-entrainment | Occurs | None | Wet type has no dust re-entrainment |
Material | Carbon steel | Plastic or corrosion-resistant steel | Wet type primarily uses corrosion-resistant non-metal materials |
Cost | Relatively low | Relatively high |
일반 활성탄에 10배의 흡착 성능
구분 | Organic Media | Inorganic Media | Special | ||||||
---|---|---|---|---|---|---|---|---|---|
Target Gas | CN | CS | CM | CX | CD | AM | ICA | AO | ST |
NH3 | ● | ○ | |||||||
SOx | ● | ● | |||||||
NOx | ● | ● | |||||||
O3 | ● | ||||||||
Cl2 | ● | ● | |||||||
HF | ● | ● | |||||||
HCl | ● | ● | |||||||
H2S | ● | ● | ● | ||||||
MM | ● | ||||||||
TMA | ● | ||||||||
Ethylene | ● | ● | |||||||
CO2 | ● | ||||||||
CO | ● | ||||||||
Aldehyde | ● | ||||||||
PGMEA | ● | ||||||||
PGME | ● | ||||||||
Phosgene | ● | ||||||||
Acetic Acid | ● | ○ | ○ | ||||||
PFC | |||||||||
VOC | ○ | ○ | ○ | ○ | ○ | ● | ○ | ||
Virus | ● |
NH3 Conc.: 50 ppm, S.V= 1,200 min-1,
RH = 50%, Mass Analyzer
Composition | Chemical impregnated carbon | |
---|---|---|
Particle shape | Extrudated | Crushed |
Target contaminants | NH3, TMA, Amine, Amide | |
Use | Filling in case or coating on supported material | |
Application | Living room, Toilet, Office |
SO2 Conc.: 200 ppm, S.V= 3,6000 hr-1,
RH = 50%, Gas Sensor
Composition | Chemical impregnated metal oxide | |
---|---|---|
Particle shape | Sphere | Extrudated |
Target contaminants | Sulfur compounds, NOx, Ethylene | |
Use | Filling in casel |
Acetic acid Conc.: 1㎕, Chamber Test
RH = 50%, Chemical test kit
Composition | Chemical impregnated carbon | |
---|---|---|
Particle shape | Extrudated | Crushed |
Target contaminants | SOx & NOx, H2S, Acid compounds | |
Use | Filling in case or coating on supported material |
Methyl Mercaptan Conc.: 500 ppm,
Flow Rate 100cc/min, Mass Analyzer
Composition | Chemical impregnated carbon | |
---|---|---|
Particle shape | Extrudated | Crushed |
Target contaminants | Sulfur compounds, Organic acids, Phosgene etc. | |
Use | Filling in case or coating on supported material | |
Application | Refrigerator, Kitchen |
HCl Conc.: 10,000 ppm,
Flow Rate 650cc/min, Mass Analyzer
Composition | Metal oxide mixture |
---|---|
Particle shape | Extrudated(Crushed) |
Target contaminants | Chlorine, Hydrochloric acid, Carbon dioxide |
Use | Swimming pools, PVC molding utility |
Ozone Conc.: 2,000 ppm,
Flow Rate 2,000cc/min, Mass Analyzer
Composition | Chemical impregnated carbon | |
---|---|---|
Particle shape | Extrudated | Crushed |
Target contaminants | VOCs, Ozone, Hydrocarbons | |
Use | Filling in case or coating on supported material | |
Application | Kitchen, Electric Heater |
Acetaldehyde Conc.: 330 ppm,
Flow Rate 340cc/min, Mass Analyzer
Composition | Chemical impregnated carbon | |
---|---|---|
Particle shape | Extrudated | Crushed |
Target contaminants | Acetaldehyde, Formaldehyde, Acetic acid | |
Use | Filling in case or coating on supported material |
Carbon Mono-oxide Conc.: 50 ppm,
Flow Rate 1,000cc/min, Mass spec.
Composition | Chemical impregnated metal oxide |
---|---|
Particle shape | Sphere |
Target contaminants | Carbon mono-oxide, Aldehydes |
Use | Filling in case |
ROOM NO | 구 분 | GAS NAME (영문) |
CHEMICAL ADSORPTION | CHEMICALL ADSORBENTS | 반응식 |
---|---|---|---|---|---|
R-1 | 독성창고 1 | ASH2 | B-1 | 4AsH2 + 11CuO → 2Cu2As + As2O5 + 7Cu + 6H2O | |
SiH4 | MTx | SiH4 + 2MOH →àM2Si + 2H2O + H2 | |||
Si2H6 | CARBON | Si2H6 + 4MOH →à2M2Si + 4H2O + H2 | |||
B2H6 | B2H6 + 3CuO → B2O3 + 3Cu+3H2 | ||||
PH3 | PH3 + 3CuO → Cu3P + P + 3H2O | ||||
R-2 | 독성창고 2 | ASH2 | B-2 | ||
NH3 | CN | NH3 + MeSOx →à(NH3)nSOx | |||
R-3 | 독성창고 3 | C2H4O | B-3 | C2H4O --> 흡착제거 | |
CO | CE | CO + O2 → CO2 | |||
HC | CARBON | HC ---> 흡착제거 | |||
R-4 | 독성창고 4 | HCI | B-4 | MF | 3HCl + MO(OH) →àMCl3 + 2H2O |
NF3 | CARBON | NF3 : NF3 + A/C → 흡착제거 | |||
CI2 | CS | Cl2 + 2MOH → 2MCl + H2O + 1/2O2 Cl2 + M(OH)2 → MCl2 + H2O + 1/2O2 |
|||
R-5 | 독성창고 5 | NO | B-5 | CARBON | AC + NO → CN*, CNO*, CNO3* |
so2 | CX | MeOH + SO2 → MeSOx + H2O |
상황 | 운전방법 1 | 운전방법 2 | 비고 |
---|---|---|---|
평상시(GAS 유출없음) | 방지시설 및 배기팬 정지 | ROOM의 음압을 유지하기위해 배기팬만 운전 방지시설은 미운전 ( VALVE OFF) | 상황에 따라 운전방법 결정 |
ROOM내부에 GAS 유출 발생시 | GAS DETECTOR SETTING 농도에 따라 감지 -> FAN/방지시설 운전 / ALARM 송출 -> 감지농도 이하로 떨어지면 FAN/ALARM 정지 | -> 유출된 ROOM에 설치된 GAS DETECTOR SETTING 농도에 따라 감지 -> 해당 방지시설 VALVE OPEN / ALARM 송출 -> 감지농도 이하로 떨어지면 해당방지시설 VALVE OFF & ALARM 정지 | |
Event 발생 후 조치 | 유출 ROOM 및 방지시설 점검 -> 필요에 따라 Chemical Media 교체 진행 | 유출 ROOM 및 방지시설 점검 -> 필요에 따라 Chemical Media 교체 진행 |